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Abstract

Quantum-enhanced Monte Carlo Markov chain optimization
The combination of classical Monte Carlo Markov chains (MCMC) methods with quan-

tum computers showed potential for achieving quantum advantage in sampling from the
Boltzmann probability distribution, a computationally hard task arising in many diverse
fields. Quantum-enhanced proposal distributions, defined by parameterized unitaries, can
outperform classical strategies in proposing effective MCMC moves. However, it is crucial
to carefully tune the values of the parameters defining these proposal distributions, as they
determine the resulting advantage over the classical counterpart. A general optimization
method becomes essential when considering parameterized unitaries for which is not possi-
ble to identify a reasonable parameter set. This could happen when adopting complicated
proposal strategies depending on a large number of parameters, or simply when no prior
or relevant information is available.

In the present thesis, we propose a general optimization algorithm that exploits es-
timates of the autocorrelation function of a certain observable, calculated over a set of
samples, to optimize the parameters defining the proposal distribution. In chapter 1 we
briefly review relevant concepts in the theory of discrete-time Markov chains, which are
fundamental to understanding the optimization algorithm. Chapter 2 introduces quantum-
enhanced Monte Carlo Markov chains algorithms, focusing on the findings presented in a
recent paper. In chapter 3 the optimization algorithm is described in great detail, followed
by the presentation and analysis of classical simulations in chapter 4. To conclude, the cur-
rent limitations of the algorithm and its potential scalability with respect to the problem’s
size are discussed.
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Chapter 1

Monte Carlo Markov chains

Monte Carlo Markov Chain (MCMC) methods are a class of algorithms constituting a fun-
damental tool in statistical physics and other fields for sampling from complex probability
distributions. In the following, we briefly review the theory of discrete-time Markov chains
in order to provide the reader with the essential concepts needed to understand the results
presented in this thesis. Interested readers can refer to the original sources for a more
detailed explanation [1, 2, 3, 4, 5, 6, 7].

1.1 Markov-chain sampling

When talking about sampling, we must distinguish between direct sampling and Markov-
chain sampling. Despite the final goal being the same, these two approaches are fundamen-
tally different. Direct sampling consists of being able to generate samples according to a
target probability distribution, without the need for any intermediate step. When dealing
with complex probability distributions, direct sampling can fail as these distributions may
be computationally intractable. In other words, it may be too hard to calculate the indi-
vidual probabilities and moments of the distribution. For instance, this is a well-known
problem in statistical physics (and not only) where often the calculation of probability
distributions’ moments involves high-dimensional integrals. When direct sampling is not
possible, Monte Carlo Markov chain methods come into play. However, the possibility
of sampling from complex probability distribution comes with a cost. Markov chains do
not sample from the target probability distribution straight away, they converge towards
it and, even when convergence is reached, there can be a correlation between successive
samples.

1.1.1 Discrete-time Markov chains

Let’s consider a discrete set S, called state space, and a sequence of n random variables
{Xi}ni = {X0, X1, ..., Xn} with values in S. We call this sequence discrete-time stochastic
process with state space S. In the following, we will refer to the elements of S by using s
for a generic element and si, sj , sk,... for specific elements. If a certain random variable
belonging to the sequence is Xt = si, the process is said to be in state si at time t and we
represent it with sit.

Definition 1.1.1. Let {Xi}ni be a discrete-time stochastic process with state space S. If,
for all t ≥ 0 and all the states s0, s1, ..., st−1, st, st+1 we have:

P (Xt+1 = st+1|Xt = st, Xt−1 = st−1, ..., X0 = s0) = P (Xt+1 = st+1|Xt = st) (1.1)
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we call the discrete-time stochastic process a Markov chain. The Markov chain is called a
homogeneous Markov chain (HMC) if P (Xt+1 = st+1|Xt = st) does not depend on t.

Intuitively, Equation 1.1 defines Markov chains as stochastic processes with no memory of
the past (Markov property). The next step depends only on the previous one, regardless
of the past history of the chain.

1.1.2 The transition matrix

Definition 1.1.2. The matrix P = {pij}, where si, sj ∈ S, whose entries are defined by:

pij = P (Xt+1 = sj |Xt = si) (1.2)

is called transition matrix.

Transition matrices are stochastic matrices, meaning that:

pij ≥ 0 and
∑
sj∈S

pij = 1 (1.3)

as the probabilities to visit all the possible states sj ∈ S must sum up to 1.
A Markov chain at time t can be described using a discrete probability distribution over
the elements of S, which we will call νt. Each entry νt(sk) represents the probability that
the chain visits state sk at time t:

νt(s
k) = P (Xt = sk) (1.4)

We call initial distribution the probability distribution ν0 defined as:

ν0(s
k) = P (X0 = sk) (1.5)

where X0 is the starting point of the chain’s discrete sequence and sk the initial state. The
probability distribution describing a discrete-time homogeneous Markov chain at time t is
given by:

νTt = νT0 P
t (1.6)

A Markov chain is therefore fully specified by two ingredients only: the transition matrix
P and the initial distribution ν0.

Definition 1.1.3. A probability distribution π is called stationary distribution of the
transition matrix P if:

πT = πTP (1.7)

A Markov chain whose initial distribution is its stationary distribution is called stationary
Markov chain.

As we will see in the next section, Markov chains converge in variation to their stationary
distribution π regardless of the initial distribution ν0. However, the initial distribution has
an important role in determining how fast the chain approaches the stationary distribution.
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1.2 Markov-chains convergence

We will consider, moving forward, only ergodic (i.e. aperiodic, irreducible and positive
recurrent) homogeneous Markov chains, meaning that they explore the full state space
S without ending up trapped in a subset of it and without following a periodic pattern
(interested readers can refer to [1] for a more formal definition). Before addressing the
concept of convergence, we ought to define a metric to quantify the distance between
probability distributions, which will come in handy later on to understand the type of
convergence of interest.

Definition 1.2.1. Let S be a discrete state space, and let ξ(s) and ν(s) be two probabilities
distributions defined on S. The total variational distance is defined by:

||ξ − ν||TV = maxsi∈S |ξ(si)− ν(si)| (1.8)

Thanks to Definition 1.2.1, we can now formally define convergence in Markov-chains:

Theorem 1.2.1 (Convergence Theorem). Let P be the transition matrix of an ergodic
Markov chain, let π be its stationary distribution and S the state space. There exist two
constants, α ∈ (0, 1) and C ≥ 0, such that:

||νTP t − πT ||TV ≤ Cαt (1.9)

for all probabilities distributions ν defined on S.

1.2.1 The spectral gap

The Convergence Theorem tells us that the probability distribution describing the state of a
Markov chain gets closer, step by step, to its stationary distribution in variational distance.
This process can be explained by analyzing the spectrum of the transition matrix. Let us
consider a transition matrix P . Transition matrices are stochastic matrices, therefore the
eigenvalues λi always satisfy:

|λi| ≤ 1 (1.10)

In particular, ergodic chains always feature 1 as a simple eigenvalue:

π1P = 1P 1 = λ1 > λ2 ≥ λ3 ≥ ... ≥ −1 (1.11)

where π1 is the stationary distribution and λi are the eigenvalues sorted in decreasing
order. Given a certain initial distribution ν0, we can express it in terms of the eigenvectors
πi of P :

νT0 = a1π
T
1 + a2π

T
2 + a3π

T
3 + ... =

∑
i

aiπ
T
i (1.12)

After t steps we have:

νT0 P
t = a11π

T
1 + a2(λ2)

tπT2 + a3(λ3)
tπT3 + ... =

∑
i

ai(λi)
tπTi (1.13)

Because of Equation 1.11, all the terms in the summation will go to zero except for λ1,
therefore leading to Equation 1.9. The slowest decaying mode corresponds to the one with
the largest eigenvalue after λ1 = 1, usually called λSLEM , where "SLEM " stands for second
largest eigenvalue magnitude.
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Definition 1.2.2. Let P be a transition matrix, the absolute spectral gap is defined as:

δ = 1− |λSLEM | (1.14)

where:
λSLEM = sup{|λ| : λ ∈ spec(P ) ∧ λ ̸= 1} (1.15)

Despite Markov chains’ convergence being a complex process, the spectral gap provides a
simple and effective way to describe it. Together with the initial distribution, it determines
how fast the chain approaches the stationary distribution. Moreover, it is directly related
to other important quantities such as the mixing time τϵ. The mixing time represents the
minimum time needed for a Markov chain to get within a certain distance (in variation)
from the stationary distribution, regardless of the initial distribution ν0.

Definition 1.2.3. Let P be a transition matrix with stationary distribution π. The mixing
time τϵ is given by:

τϵ = inf{t : supν0 ||νT0 P t − πT ||TV ≤ ϵ} (1.16)

τϵ is bounded by the spectral gap:

(δ−1 − 1)log(
1

2ϵ
) ≤ τϵ ≤ δ−1log(

1

ϵ infs(π(s))
) (1.17)

1.2.2 Detailed balance

We now know that Markov chains converge to their stationary distribution. However, if we
want to leverage Markov chains to sample from complex probability distributions, we need
to devise a strategy to define a transition matrix such that its stationary distribution is the
target probability distribution we want to sample from. Let π∗ be the target probability
distribution and pij = P (j|i) the probability to transition from state i to state j, defining
the entries of the transition matrix. We can rewrite π∗ in the following way:

π∗(sk) =
∑

si∈S\sk
π∗(si)pik + π∗(sk)pkk

π∗(sk)(1− pkk) =
∑

si∈S\sk
π∗(si)pik

(1.18)

From the normalization condition defined in Equation 1.3, we have that 1−pkk =
∑

si∈S\sk pki.
Introducing it in the previous equation, we obtain:

π∗(sk)(
∑

si∈S\sk
pki) =

∑
si∈S\sk

π∗(si)pik (1.19)

One way to satisfy the equation is the following:

π∗(sk)pki = π∗(si)pik ∀ si, sk ∈ S (1.20)

Also known as the detailed balance condition. In summary, if we manage to define a transi-
tion matrix P whose entries satisfy Equation 1.20 for a desired probability distribution π∗,
we know the corresponding Markov chain will converge in variation to that distribution.
A Markov chain whose transition matrix satisfies the detailed balance condition is called
reversible.
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1.2.3 The Metropolis-Hastings algorithm

Given a certain desired probability distribution π∗ and a transition matrix P = {pij}, they
can always be reconciled with the detailed balance condition by adopting the following
strategy:

pij = Q(j|i)︸ ︷︷ ︸
propose si → sj

A(j|i)︸ ︷︷ ︸
accept si → sj

(1.21)

where we split the probabilities pij into proposal probability Q(j|i) and acceptance proba-
bility A(j|i). As the pij must satisfy Equation 1.20, the acceptance probabilities become:

A(j|i)
A(i|j)

=
π∗(sj)Q(i|j)
Q(j|i)π∗(si)

(1.22)

leading to the so-called Metropolis-Hastings algorithm:

A(j|i) = min(1,
π∗(sj)Q(i|j)
Q(j|i)π∗(si)

) (1.23)

The Metropolis-Hastings algorithm is a general and fairly simple approach to ensure con-
vergence to the desired probability distribution. However, it does not give any information
about the convergence rate or the correlation between successive samples, which are funda-
mental aspects of Markov chain sampling. They both depend on the quality of the proposal
distribution Q. Therefore, even though in principle we could use any Q and still satisfy
the detailed balance condition, we want to aim for a proposal distribution that resembles
the target distribution. A random proposal strategy could lead to many rejections and
consequently increase the correlation between successive samples.

1.3 Statistical errors and autocorrelations in MCMC

As already mentioned, Markov chains are a powerful tool to evaluate high-dimensional
integrals. Let’s consider the following integral:

⟨f⟩ =
∫
S
f(s)p(s)ds (1.24)

where f : S → R is a real-valued function (also called observable) on the state space S
and p(s) a probability distribution defined on S as well. By sampling n times from p(s)
we can approximate the integral:

⟨f⟩ =
∫
S
f(s)p(s)ds ≈ f̄ =

1

n

n∑
i

f(Xi) (1.25)

where Xi is the i-th sample. If these samples are independent, we know from the Central
Limit Theorem (CLT) that the estimator variance is given by:

V ar(f̄) =
1

n
V arp(s)(f) (1.26)

meaning that the standard error of the estimator
√
V ar(f̄) goes down as 1/

√
n. However,

Markov chain samples are not independent in general. Therefore, when using Markov chain
sampling to approximate complex integrals we need to take into account the correlation
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by including an additional factor in the estimator variance: the integrated autocorrelation
time. Equation 1.26 then becomes:

V ar(f̄) =
τint,f
n

V arp(s)(f) (1.27)

where n/τint,f is in practice an estimate of the number of effectively independent samples.
In simple words, the integrated autocorrelation time tells us how many Markov chain steps
we need after sampling Xi such that the state sampled at Xi is forgotten.

1.3.1 The autocorrelation time

Before giving a formal definition of the integrated autocorrelation time, we ought to define
the autocorrelation function (ACF) and the exponential autocorrelation time. We consider
a stationary reversible Markov chain {Xi}ni , with transition matrix P . As the chain is
stationary, we have:

⟨fi⟩ = ⟨fi+l⟩ = µ ∀ i, l ∈ N (1.28)

where fi = f(Xi) and Xi the i-th Markov chain sample. The unnormalized autocorrelation
function is then given by:

Cff (l) = ⟨(fi − ⟨fi⟩)(fi+l − ⟨fi+l⟩)⟩ = ⟨(fi − µ)(fi+l − µ)⟩ = ⟨f0fl⟩ − µ2 (1.29)

while the normalized autocorrelation function:

ρff =
Cff (l)

Cff (0)
Cff (0) = V arπ(f) (1.30)

Intuitively, the ACF measures the correlation between Markov chain samples separated by
a lag l. For large enough lags, the ACF typically decays exponentially:

Cff (l) ∼ e
− l

τexp,f (1.31)

where τexp,f is the relaxation time of the slowest decaying mode on which f has a non-zero
projection (interested readers are encouraged to refer to [5] for a more detailed discussion).
We can now define the exponential autocorrelation time τexp:

τexp,f = lim
l→+∞

l

−log(|ρff (l)|)
τexp = supf (τexp,f )

(1.32)

where τexp is the relaxation time of the slowest mode in the system, whose corresponding
eigenvalue is λSLEM . It can be shown that:

R = e−1/τexp (1.33)

with R being the spectral radius of P :

R = inf{r : spec(P ) \ 1 ⊂ {λ : |λ| ≤ r}} (1.34)

As the considered Markov chain is reversible, i.e. satisfies the detailed balance condition,
the spectrum of P is real and the eigenvalues lie in the interval [−1, 1]. We can therefore
rewrite Equation 1.33 as:
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τexp =
−1

log(λSLEM )
(1.35)

which provides a direct link between the autocorrelation time and the spectral gap δ =
1− λSLEM . Finally, the integrated autocorrelation time is defined as:

τint,f =
1

2

+∞∑
l=−∞

ρff (l) =
1

2
+

+∞∑
l=1

ρff (l) (1.36)

Despite being related, τint,f and τexp play different roles. On the one hand, τint,f determines
the statistical error affecting MCMC estimates, as we saw in Equation 1.27. On the other
hand, τexp provides insights into the chain convergence process and gives a measure of the
initialization bias, i.e. the initial transient of the chain whose samples do not represent the
stationary distribution. As they both are fundamental quantities in Monte Carlo Markov
chain simulations, several estimators can be found in the literature [8, 9, 5].

1.3.2 Estimators

Sokal proposed a simple approach to estimate the integrated autocorrelation time based
on a set of samples [5]. It consists in estimating the ACF first, in order to then calculate
τint as per definition. We consider a set of samples {fi}ni , where fi = f(Xi) and Xi the
i-th (stationary) Markov chain sample. The unnormalized ACF estimator is given by:

Ĉff (l) =
1

n− l

n−l∑
i

(fi − µ)(fi+l − µ) (1.37)

where µ is the observable mean:
µ = ⟨f⟩ (1.38)

In case the observable mean is unknown, the estimator is redefined as:

ˆ̂
Cff (l) =

1

n− l

n−l∑
i

(fi − f̄)(fi+l − f̄) (1.39)

where:

f̄ =
1

n

n∑
i

fi (1.40)

introducing a bias which decays as 1/n. Both Ĉff (l) and ˆ̂
Cff (l) are consistent estimators:

lim
n→∞

Ĉff (l) = lim
n→∞

ˆ̂
Cff (l) = Cff (l) (1.41)

however, it is important to underline that Ĉff (l) and ˆ̂
Cff (l) are random variables, affected

therefore by a statistical error which is usually quantified using the standard deviation
(standard error). The estimator variance is given by [5, 10, 11]:
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V ar(Ĉff (l)) = (
1

n
)

∞∑
m=−∞

[Cff (m)2 + Cff (m+ l)Cff (m− l) + κ(l,m,m+ l)] + o(
1

n
)

Cov(Ĉff (l), Ĉff (u)) = (
1

n
)

∞∑
m=−∞

[C(m)ffCff (m+ u− l) + Cff (m+ u)Cff (m− l)+

κ(l,m,m+ u)] + o(
1

n
)

(1.42)
where l, u ≥ 0 and κ is the connected 4-points autocorrelation function:

κ(r, s, l) = ⟨(fi − µ)(fi+r − µ)(fi+s − µ)(fi+l − µ)⟩
−Cff (r)Cff (l − s)− Cff (s)Cff (l − r)− C(l)ffC(s− r)ff

(1.43)

As the terms in the summation in Equation 1.42 do not depend on n, we have that the
variance is inversely proportional to the number of samples (as the CLT suggests), leading
to a standard error that goes down as 1/

√
n and dominates over the bias for large n. We

can now estimate the normalized ACF:

ˆ̂ρ(l) =
ˆ̂
Cff (l)/

ˆ̂
Cff (0) (1.44)

Finally, the integrated autocorrelation time estimator is given by:

ˆ̂τint,f =
1

2

+(n−1)∑
l=−(n−1)

ˆ̂ρ(l) (1.45)

Even though Equation 1.45 it seems a natural way to estimate τint,f , the estimator variance
does not go to zero as n (number of samples) diverges [11]. This happens because the noise
coming from the terms ˆ̂ρ(l) at large lags (l >> τexp) dominates over the τint,f estimate.
A practical solution consists in including a function h(l) that cuts off large lag terms,
redefining the estimator in the following way:

ˆ̂τint,f =
1

2

+(n−1)∑
l=−(n−1)

h(l)ˆ̂ρ(l) h(l)

{
≈ 1 |l| ≲ τexp

≈ 0 |l| >> τexp
(1.46)

A common choice for h(l) is :

h(l)

{
= 1 |l| ≤M
= 0 |l| > M

(1.47)

where M is a parameter that has to be tailored to the specific problem. Equation 1.47
makes the estimator consistent but introduces a bias at the same time. The value of the
parameter M controls the trade-off between the two:

bias(ˆ̂τint,f ) = −1

2

∑
|l|>M

ρ(l) + o(
1

n
) V ar(ˆ̂τint,f ) ≈

2(2M + 1)

n
τ2int,f (1.48)



Chapter 2

Quantum-enhanced Monte Carlo
Markov chain

In the following chapter, we present a hybrid algorithm, developed by Layden et al. [12],
that samples from the Boltzmann probability distribution of classical Ising models outper-
forming classical Monte Carlo Markov chain methods at low temperatures. We start by
defining the specific sampling problem addressed by the algorithm, followed by a concise
description of the classical strategies commonly adopted. We then present the quantum-
enhanced Monte Carlo Markov chain (QMCMC) algorithm and, finally, report the simu-
lations and experimental results from the paper. The concepts and findings presented in
this chapter are fundamental to understanding the content of chapter 3.

2.1 The sampling problem

Before diving into the sampling problem, we ought to briefly introduce the Ising model.
The Ising model is a statistical physics model introduced by E. Ising in 1925 to study phase
transitions and critical phenomena. It consists of a number N of spins si, binary variables
assuming either the value +1 or −1. The spins, arranged on a lattice, interact with each
other according to the coupling strengths {Jij}Ni>j=1. They can also interact individually
with an external magnetic field, represented by the coefficients {hi}Ni=1. An instance of the
model is fully defined by the couplings Jij and the fields hi. The energy function is defined
as:

E(s) = −
N∑

i>j=1

Jijsisj −
N∑
i=1

hisi (2.1)

assigning some scalar value E to every spin configuration s = {s1, s2, ..., sN}. The corre-
sponding Boltzmann probability, representing the probability of observing a configuration
s given a certain value of the parameter T (usually called temperature), is defined as:

µ(s) =
1

Z
e−E(s)/T Z =

∑
s∈S

e−E(s)/T (2.2)

where S is the state space containing all the possible 2N spins configurations and Z is the
partition function normalizing the probabilities.

Sampling from the Boltzmann distribution of classical Ising models turns out to be a useful
task in many diverse fields. However, due to the exponentially large state space (|S| =
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2N ), the partition function is in general computationally intractable. To overcome this
issue, various approaches have been developed, with Monte Carlo Markov Chain (MCMC)
methods being the most widely adopted solution.

2.2 Classical MCMC proposal strategies

In subsection 1.2.3 we highlighted how the proposal strategy, defining the transition matrix
of the chain, is crucial in determining the convergence rate of a Markov chain to the target
probability distribution. Among many classical proposal strategies, the most popular and
commonly used are:

• local proposal strategy: new configurations s′ are proposed by simply flipping a single
uniformly random spin in the current spin configuration s (si → −si)

• uniform proposal strategy: new configurations s′ are selected randomly among all the
possible s ∈ S

These two strategies are not suited for sampling from the Boltzmann distribution of Ising
models at low temperatures, in particular when couplings Jij and fields hi are random
variables following no specific pattern (the so-called spin glasses). Indeed, in these cases,
Equation 2.1 defines a rugged energy landscape with several local minima that can be
far away in Hamming distance, as shown in Figure 2.1b. Both the local and the uniform
proposal strategies fail to quickly explore the full landscape and get often stuck in local
minima, slowing down the convergence. The first one tends to propose states that are
close in Hamming distance, featuring similar energies. On the one hand, they are likely
to be accepted, on the other a large number of steps are required in order to escape local
minima.

Figure 2.1: a. Example of a spin glass model: N = 5 fully connected Ising model instance
with normally distributed couplings. The blue arrows represent the spins while the edges
are the couplings Jij . b. Example of a typical spin glass model energy landscape. Classical
proposal strategies are depicted for illustration purposes.

The uniform strategy is able to reach faraway configurations in Hamming distance. How-
ever, the random proposal does not prioritize configurations corresponding to energy min-
ima. Since, at low temperatures, high-energy state probabilities are much smaller than
low-energy ones, this strategy leads to many rejections and consequently a slow conver-
gence and a high correlation.
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2.3 Quantum-enhanced MCMC algorithms

Layden et al. recently proposed a hybrid quantum-classical algorithm (Algorithm 1)1

that samples from the Boltzmann probability distribution of Ising models outperforming
classical methods at low temperatures (T ≤ 10). The algorithm exploits the properties of
certain quantum spin glass Hamiltonians, which have been shown to exhibit eigenvectors
with concentrated components on low-energy spin states, in order to improve the proposal
strategy [13, 14]. Indeed, these Hamiltonians are likely to promote transitions between low-
energy states even when far away in Hamming distance, allowing to effectively navigate
the energy landscape while prioritizing low-energy states.

Figure 2.2: Quantum and classical proposal strategies comparison. In the quantum case,
the proposal strategy prioritizes low-energy states, resembling the Boltzmann probability
distribution at low temperatures.

The algorithm starts, like its classical counterpart, by selecting a random initial spin con-
figuration s. The spin configuration s is mapped onto a computational basis state |s⟩,
eigenstate of the quantum Hamiltonian:

Hprob = −
N∑
i>j

JijZiZj −
N∑
i

hiZi (2.3)

The quantum state is then evolved under the following parametrized Hamiltonian:

H(γ) = (1− γ)αHprob + γHmix Hmix =
N∑
i

Xi (2.4)

where γ ∈ [0, 1] is a parameter controlling the weight ofHmix, α =
√
N/(

∑N
i>j J

2
ij+

∑N
i h2i )

is a factor ensuring that Hprob and Hmix share the same order of magnitude, and Zi =

I1 ⊗ ...⊗ Ẑ ⊗ ...⊗ IN are Pauli operators acting on the i-th spin (same for Xi). Note that
Hmix is responsible for generating transitions between different Hprob eigenstates. Finally,
the evolved state |ψ⟩:

|ψ⟩ = U(γ, t)|s⟩ = e−iH(γ)t|s⟩ (2.5)

is measured in the computational basis. The measurement result |s′⟩, mapped back onto
the corresponding spin configuration s′, constitutes the proposal for the successive step,

1We have chosen to employ a universal pseudocode approach throughout this thesis. The reader can
easily interpret the general algorithms and translate them into their preferred programming language.
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which can be either accepted or rejected depending on the associated Metropolis-Hastings
probability. The aforementioned routine is then repeated until convergence is reached.

Although this algorithm has the potential to outperform classical methods, it is fundamen-
tal to carefully choose the values of the parameters γ and t as they determine the quality of
the quantum proposal strategy affecting the resulting advantage. In Algorithm 1, in each
iteration, γ and t are sampled uniformly at random from the intervals [0.25, 0.6] and [2,
20] respectively. This approach has been adopted because the optimal parameter values
feature a complicated dependence on the specific model instance and no straightforward
optimization method is available. While random sampling over some reasonable intervals
already enables quantum advantage, more advanced strategies may lead to even better
results. In particular, an optimization method becomes essential when considering cases
where is not possible to identify reasonable intervals a priori, for example when adopting
more complicated proposal strategies depending on a large number of parameters. This
topic will be explored in the next chapter.

Algorithm 1 Quantum-enhanced Monte Carlo Markov chain
1: s ← random({s : s ∈ S}) ▷ selecting initial configuration uniformly at random
2: repeat
3: Propose state
4: γ ← random uniform ([0.2, 0.6])
5: t ← random uniform ([2, 10])
6: |s⟩ ← s ▷ mapping spin configuration onto computational basis state
7: |ψ⟩ ← U(γ, t)|s⟩ ▷ where U(γ, t) = e−iH(γ)t

8: |s′⟩ ← measure |ψ⟩ ▷ measuring |ψ⟩ in the computational basis
9: s′ ← |s′⟩ ▷ mapping computational basis state onto spin configuration

10: Accept or reject state
11: A ← min(1, e(E(s)−E(s′))/T )
12: if A ≥ random uniform ([0, 1]) then
13: s ← s′

14: end if
15: until converged

The transition matrix describing the quantum-enhanced Markov chain is given by:

P (s′|s) = A(s′|s)Q(s′|s)(γ, t) + δss′
∑
s′′∈S

(1−A(s′′|s))Q(s′′|s)(γ, t) (2.6)

whereQ(s′|s)(γ, t) is the quantum proposal distribution, with U(γ, t) the proposed parametrized
anstaz:

Q(s′|s)(γ, t) = |⟨s′|U(γ, t)|s⟩|2 U(γ, t) = e−iH(γ)t (2.7)

and A(s′|s) is the Metropolis-Hastings acceptance probability:

A(s′|s) = min(1,
µ(s′)Q(s|s′)(γ, t)

µ(s)Q(s′|s)(γ, t)
) (2.8)

Note that the factor
∑

s′′∈S(1−A(s′′|s))Q(s′′|s)(γ, t) in Equation 2.6 is needed to ensure
that probabilities in the transition matrix columns sum up to 1. The unitary U(γ, t)
defining the quantum proposal distribution is chosen to be symmetric such that is possible
to easily calculate the acceptance probabilities:
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Q(s′|s)(γ, t) = Q(s|s′)(γ, t) ⇒ A = min(1,
µ(s′)

µ(s)
) = min(1, e(E(s)−E(s′))/T ) (2.9)

adapted from [12]

Figure 2.3: Average spectral gap δ simulations for both classical and quantum proposal
strategies. In the quantum case, the spectral gap is numerically calculated by diagonalizing
the transition matrix defined in Equation 2.6. The plots show the average over 500 Ising
model instances, fully connected with normally distributed couplings Jij ∼ N (0, 1) and
fields hi ∼ N (0, 1). The colored error bands represent the standard deviations while
solid and dashed lines simply help with visibility. a. Comparison of the temperature
dependencies of quantum and classical proposal strategies. At low temperatures (T ≤ 10)
the quantum proposal shows a clear advantage over the classical competitors. b. Scaling
of the spectral gap with respect to the problem size (number of spins N) for the various
proposal strategies. c. Spectral gap’s exponential decay rate fit results.

adapted from [12]

Figure 2.4: Average spectral gap δ experimental results. In the quantum case, a large
number (5, 76 × 107) of quantum transitions |s⟩ → |s′⟩ has been recorded in experiments
and used to estimateQ(s|s′)(γ, t). The experiments verified the simulations’ results, demon-
strating that quantum proposal distributions have the potential to bring a quantum ad-
vantage.

Reported in Figure 2.3, numerical simulations of the spectral gap averaged over 500 dif-
ferent instances of the Ising model (fully connected with randomly distributed couplings
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Jij ∼ N (0, 1) and fields hi ∼ N (0, 1)) showed that the quantum proposal distributions
lead to significantly faster convergence at low temperatures (T ≤ 10) compared to classical
methods. Subsequent experiments conducted on IBM’s quantum computers verified these
results (Figure 2.4), demonstrating that quantum proposal distributions are able to bring
an advantage in the NISQ era. The relatively shallow circuits required to implement the
algorithm render it suitable for modern noisy devices.



Chapter 3

Quantum-enhanced MCMC
optimization

In the previous chapter, we presented a hybrid algorithm combining classical MCMC meth-
ods with quantum-enhanced proposal distributions defined by a parameterized unitary
U(γ, t) (Equation 2.7). Apart from the symmetry requirement (Equation 2.9), which is
necessary to easily calculate the acceptance probabilities, the choice of the unitary is un-
constrained. There are several promising options, such as exploiting the reverse quantum
annealing [15], however, it is likely they will depend on a certain set of parameters θ̄. The
unitary U(γ, t) is a perfect example: it depends on γ, controlling the relative weights of
the two Hamiltonians Hprob and Hmix, and t, the evolution time. It is, therefore, crucial
to develop a general approach to optimize these parameters. In the following, we present
a general algorithm that addresses this problem and we demonstrate its effectiveness by
optimizing the parametrized unitary U(γ, t). Firstly, we outline the general structure of
the algorithm, followed by a thorough analysis of each individual step. We then compare
the performances of the optimized quantum proposal strategy with the results obtained by
Layden et al. [12]. To conclude, we discuss the limitations of the optimization algorithm
and suggest potential areas of future research.

3.1 QMCMC optimization algorithm

The optimization algorithm takes inspiration from the Variational Quantum Eigensolver
(VQE) algorithm. As depicted in Figure 3.1a, the VQE iteratively updates the parameters
of a parametrized circuit until the minimum of a loss function (the expectation value of
the energy in this case) is reached. The same strategy is adopted by our algorithm, whose
high-level representation is shown in Figure 3.1b, while the pseudocode1 can be found in
Algorithm 2.
Before diving into the details of the optimization routine, we ought to define the notation
we will be using. Let S be the state space of all the 2N possible spin configurations s, with
N the number of spins in the considered system. Let f : S → R be a real-valued function
defined on S. θ̄ will be the generic set of parameters, defining the quantum proposal
distribution Q(s′|s)(θ̄) = |⟨s|U(θ̄)|s′⟩|2, we aim to optimize. With Loss, instead, we will
refer to a generic loss function. Several suitable options are available and more details will
be given in subsection 3.1.1. Finally, let R be an array where we can store partial results
during the computation.

1We have chosen to employ a universal pseudocode approach throughout this thesis. The reader can
easily interpret the general algorithms and translate them into their preferred programming language.
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a. Variational Quantum Eigensolver algorithm

b. Quantum-enhanced MCMC optimization algorithm

Figure 3.1: a. High-level representation of the Variational Quantum Eigensolver algo-
rithm b. High-level representation of the Quantum-enhanced MCMC optimization algo-
rithm. The algorithm starts by running a Quantum-enhanced Markov chain: it evolves
the current computational basis state |s⟩ under U(θ̄) (1), the evolved state |ψ⟩ is then
measured in the computational basis (2) and the measurement result is either accepted or
rejected according to the Metropolis-Hastings probabilities (3). An observable f is eval-
uated over the new spin configuration and, finally, the spin configuration is mapped onto
a computational basis state (4) that constitutes the starting point for the successive step.
Once a certain number n of samples has been gathered, a Loss function is evaluated over
these samples (5) and the resulting value is fed to the classical optimizer which provides
then new parameter values for the parametrized quantum circuit implementing the quan-
tum state proposal (6).

The optimization algorithm iteratively updates the parameters defining the quantum pro-
posal distribution until the Loss function value converges to a minimum. It consists of
a feedback loop that runs quantum-enhanced Markov chains to evaluate a Loss function
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and optimize the proposal strategy. At each iteration, we run a quantum-enhanced Markov
chain proposing moves using the current proposal distribution Q(s′|s)(θ̄) = ⟨s|U(θ̄)|s′⟩, and
we record the visited states {s0, s1, s2, ...}. For each visited state s, an observable f(s)
is evaluated and stored in the register R. The observable choice depends on the specific
problem we are dealing with and on the Loss function we want to use. Once a set number
n of MC steps has been performed, we then evaluate the Loss function over the n samples
and pass the value to the classical optimizer. The classical optimizer provides then new
parameter values for the parametrized quantum circuit implementing the quantum state
proposal U(θ̄). This routine is repeated until either the Loss converges or we reach a
maximum number of iterations.
Note that in Algorithm 2, the function ClassicalOptimizer(Loss(R), θ̄guess) is not de-
fined as any minimization algorithm could be used. In subsection 3.1.3, we will present the
one we used for numerical simulations, proposing also promising alternatives. The function
Loss(R) is not defined as well. Several suitable options are available and will be presented
in subsection 3.1.1.

Algorithm 2 QMCMC optimization algorithm

1: function RunQMCMC(θ̄)
2: U(θ̄) ← e−iH(θ̄)t

3: R ← ∅
4: s ← last visited state in previous iteration
5: for set number n of steps do
6: propose next state
7: |s⟩ ← s ▷ mapping spin configuration onto computational basis state
8: |ψ⟩ ← U(θ̄)|s⟩
9: |s′⟩ ← measure |ψ⟩ ▷ measuring |ψ⟩ in the computational basis

10: s′ ← |s′⟩ ▷ mapping computational basis state onto spin configuration
11: accept or reject state
12: A ← min(1, e(E(s)−E(s′))/T )
13: if A ≥ random uniform ([0, 1]) then
14: s ← s′

15: end if
16: R ← R ∪ {f(s)} ▷ evaluating observable f over the sampled state s
17: end for
18: return R
19: end function

20: optimization algorithm
21: θ̄ ← initialize params guess
22: repeat
23: θ̄∗ ← ClassicalOptmizer(Loss(RunQMCMC()), θ̄)
24: θ̄ ← θ̄∗

25: until converged or max iteration reached
26: return θ̄ ▷ return optimal parameters

3.1.1 Loss function

The algorithm described in Algorithm 2 is loss function agnostic. Several options turned
out to be suitable choices, such as the convergence of a certain observable (energy or
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magnetization), or the mean first passage time (MFPT), defined as the average time the
system takes to reach a particular state for the first time. In the end, since we aimed for a
general and potentially scalable optimization approach, the autocorrelation function (ACF)
proved to be the optimal candidate. The ACF of a given observable f can be heuristically
estimated using Markov chain samples, regardless of the problem considered, the proposal
strategy used or the chosen observable f . As already showed in subsection 1.3.1, considering
a certain stationary Markov chain in the space state S, represented by a set of successive
states {s0, s1, s2, ...} = {si}ni , the ACF function of a given observable f is defined as:

C(l)ff = ⟨(fi − µ)(fi+l − µ)⟩ fi = f(si) si ∈ S (3.1)

where µ is the observable mean:
µ = ⟨f⟩ (3.2)

and typically decays exponentially for large enough l:

Cff (l) ∼ e
− l

τexp (3.3)

where τexp is the exponential autocorrelation time and l is the lag. The ACF provides
a measure of the correlation between Markov chain samples separated by a lag l. Under
the assumption that the chosen observable f has a non-zero projection on the transition
matrix eigenvector corresponding to λSLEM , the exponential autocorrelation time τexp is
directly related to the spectral gap δ through:

τexp = −
1

ln(λSLEM )
= − 1

ln(1− δ)
(3.4)

By minimizing Cff (l) at a certain lag l, we are effectively minimizing the exponential au-
tocorrelation time τexp and consequently maximizing the spectral gap δ. In other words,
we are maximizing the convergence rate of the Markov chain (for a more detailed discus-
sion, see subsection 1.2.1). For the sake of brevity, in the following we will use the term
"autocorrelation time" and the Greek letter τ to refer to the exponential autocorrelation
time.

Several estimators for either Cff or τ are available in the literature, however, they all share
the same limitation: they all depend on one or more parameters, which strongly influence
the quality of the final estimate. We consider these as hyperparameters of our optimization
algorithm, which have to be carefully tuned in order to obtain satisfying results.
After a thorough evaluation of several possible solutions, the estimator proposed by A.
Sokal [5] was selected due to its simplicity (more computationally efficient with respect to
the others) and ease of optimization of the related hyperparameters, discussed in detail in
subsection 3.1.2. The estimator, Loss function in our optimization algorithm, is defined
as:

Ĉff (l) =
1

n− l

n−l∑
i

(fi − µ)(fi+l − µ) (3.5)

where n is the number of samples we use for the estimate, in other words, the number of
steps in the chain we run to evaluate the estimator.
Equation 3.1 assumes that we are considering a stationary Markov chain, meaning that it
reached convergence and we are effectively sampling from the target probability distribu-
tion:
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µ = ⟨f⟩ = ⟨fi⟩ = ⟨fi+l⟩ ∀i, i+ l < n (3.6)

Therefore, in order to be able to use experimental data to estimate Cff (l) through Ĉff (l),
we should wait for convergence first. From a practical point of view, we do not need to
sample exactly from the target probability distribution in order to obtain a good estimate
of Cff (l), a probability distribution close enough to the desired one will suffice.

Figure 3.2: Pictorial representation of the QMCMC optimization algorithm. The colored
straight lines represent Markov chains jumping from one state to another, where the states
are the colored points. We start by discarding the data from the initial transient (black
lines and dots), such that during the first optimization step we are already sampling from a
probability distribution close to the target one. We run several Markov chains characterized
by different proposal distributions (colored lines and dots) and calculate the Loss for each
one. The minimum Loss value determines the new parameter set, which becomes the
initial guess for the second optimization step (big black dot).

This poses a problem: every time we want to evaluate the quality of a certain proposal
distribution Q(s′|s)(θ̄) = ⟨s|U(θ̄)|s′⟩ by calculating Ĉff (l) (the Loss) over a set of samples
we have to discard a large number of Markov chain steps before we can start gathering
"good" samples. However, there is a practical solution. An optimization step consists in
evaluating several proposal distributions by running as many Markov chains and calculating
the Loss for each one. The way these proposal distributions are selected converging to
a minimum depends on the specific minimization algorithm adopted (see subsection 3.1.3
for more details). In order to avoid discarding data every time the Loss is evaluated,
the following approach can be used. We start the optimization by discarding an initial
transient, such that during the first optimization step we are already sampling from a
probability distribution close to the target one. Then, we start each Markov chain from
the last state visited by the previous one, concatenating different chains, as illustrated
in Figure 3.2. Even though this results in a non-Markovian chain as the optimization
process retains memory of the past, this approach leads to individual chains having an
effective initial distribution. As explained in chapter 1, the initial distribution has an
important role in determining the convergence speed. Thus the chains are able to quickly
get close enough to the stationary probability distribution and produce "good" samples.
This strategy turned out to work well in practice, significantly reducing the running time
of the algorithm.
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3.1.2 Hyperparameters: number of samples n and lag l

Ĉff (t) provides a consistent and unbiased estimate of Cff (t), but requires prior knowledge
of the observable mean µ. Given that, in general, we do not have access to this information,
we have to settle for:

µ ≈ f̄ =
1

n

n∑
i

fi (3.7)

redefining the estimator as:

ˆ̂
Cff (l) =

1

n− l

n−l∑
i

(fi − f̄)(fi+l − f̄) (3.8)

However, relying on Equation 3.7 introduces a bias, which decays as 1/n. To leading
order in 1/n, Ĉff (l) (Equation 3.5) and ˆ̂

Cff (l) (Equation 3.8) share the same behaviour.
Therefore, the larger the number of samples n, the more accurate is our estimator. In
addition to the bias, the second source of error comes from the fact that Ĉff (l) and ˆ̂

Cff (l)
are random variables. We can therefore look at the variance to estimate the error scaling
with respect to n (for a more detailed discussion, see subsection 1.3.2):

V ar(Ĉff (l)) = (
1

n
)

∞∑
m=−∞

[C(m)2 + C(m+ l)C(m− l) + κ(l,m,m+ l)] + o(
1

n
) (3.9)

where κ is the connected 4-points autocorrelation function:

κ(r, s, l) = ⟨(fi − µ)(fi+r − µ)(fi+s − µ)(fi+l − µ)⟩
−C(r)C(l − s)− C(s)C(l − r)− C(l)C(s− r)

(3.10)

Leading to a standard error
√
V ar(Ĉff ) that goes down as 1/

√
n.

In summary, both the bias error and the standard error, which constitute the noise η
affecting Cff (l) estimates, go down when increasing the number of samples. Therefore, in
general, is desirable to maximize n in order to get more accurate results. The larger n, the
less noisy is the optimization landscape that the classical optimizer explores. As for large
n the standard error term dominates, we consider the noise to decrease approximately as
1/
√
n.

The second hyperparameter to deal with is the lag l, i.e. the distance at which we are
looking if there is a correlation between Markov chain samples. It is crucial to choose l
carefully as it affects the classical optimizer’s ability to distinguish between two different
sets of parameters. Consider two different parameters sets θ̄1 and θ̄2 characterized by
different proposal distributions, respectively Q(s′|s)(θ̄1) = ⟨s|U(θ̄1)|s′⟩ and Q(s′|s)(θ̄2) =
⟨s|U(θ̄2)|s′⟩. The optimizer uses the value of the corresponding ACFs at a certain lag l,
called Cff (l)1 and Cff (l)2, to determine which set of parameters defines a better proposal
distribution. Since the optimizer objective is to minimize the ACF:

∆C(l) = Cff (l)1 − Cff (l)2 →

{
∆C(l) < 0 → θ̄1 better

∆C(l) > 0 → θ̄2 better
(3.11)

Given that we do not have access to the true values Cff (l)1 and Cff (l)2, the optimizer

evaluates the corresponding estimators ˆ̂
Cff (l)1 and ˆ̂

Cff (l)2 affected by noise, which de-
creases with the number of samples n as shown previously. If ∆C(l) ends up having the
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same order of magnitude of the noise, either because we did not gather enough samples or
we made a poor choice for the lag l, the algorithm is not able to distinguish between θ̄1
and θ̄2. The hyperparameters define how accurate is the optimization.

We developed several approaches to select a proper lag value l:

• Lag integration Loss:
Considering a set of Markov chain samples, Cff (l) assumes positive values as long
as there is correlation between samples separated by a lag l. If we pick a value of l
large enough such that the samples are not correlated anymore, then Cff (l) assumes
random values, as shown in Figure 3.3.

Figure 3.3: Typical ACF trend. It features an exponential decay followed by a
plateau as the degree of correlation decreases. At large l it assumes random values.
Note that, for the sake of simplicity, we assumed that the ACF is governed by a single
exponential autocorrelation time even at small l.

In order to remove the burden of selecting a good l, we can integrate ˆ̂
Cff (l) in l and

stop the integration as soon as ˆ̂
Cff (l) ≤ 0, as described in Algorithm 3. The integral

becomes the Loss function used by the optimization algorithm (Algorithm 2).

Algorithm 3 lag integration Loss
1: function Loss(R)
2: n ← count(R) ▷ n is the number of samples in the set R
3: f̄ ← mean(R)
4: l, Cint, C ← 0, 0, 0
5: repeat
6: Cint ← Cint + C
7: C ← 0
8: l ← l + 1
9: for fi ∈ R and i+ l ≤ n do

10: C ← C + (fi − f̄)(fi+l − f̄)
11: end for
12: C ← C/(n− l)
13: until C ≤ 0
14: return Cint

15: end function
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• Fixed lag Loss:
A simple and heuristic method to select a reasonable lag value lfix is through a

trial and error approach. ˆ̂
Cff (lfix) becomes then the Loss function, as shown in

Algorithm 4. The effectiveness and applicability of this approach depend on the
problem at hand.

Algorithm 4 fixed lag Loss
1: function Loss(R)
2: n ← count(R) ▷ n is the number of samples in the set R
3: f̄ ← mean(R)
4: C ← 0
5: for fi ∈ R and i+ lfix ≤ n do
6: C ← C + (fi − f̄)(fi+lfix − f̄)
7: end for
8: C ← C/(n− lfix) ▷ can be omitted, it does not add any information
9: return C

10: end function

• Lag optimization Loss:
Another option consists in including a subroutine in our algorithm that updates l at
each iteration by tracking the maximum of ∆C(l), as described in Algorithm 5. In
this way, the algorithm automatically adjusts the lag value based on the current state
of the optimization. At each optimization step, the algorithm keeps track of ˆ̂

Cff at

three different lag values: ˆ̂
Cff (l − ξ), ˆ̂

Cff (l),
ˆ̂
Cff (l + ξ), where l is the current lag

value and ξ is a parameter controlling the magnitude of the lag update. Only ˆ̂
Cff (l)

is actually used as Loss function to carry out the optimization.

Algorithm 5 lag optimization Loss
1: function Loss(R, l)
2: n ← count(R) ▷ n is the number of samples in the set R
3: f̄ ← mean(R)
4: Υ ← {l − ξ, l, l + ξ} ▷ ξ determines the magnitude of the lag update
5: Λ ← ∅
6: for υ ∈ Υ do
7: Cυ ← 0
8: for fi ∈ R do
9: Cυ ← Cυ + (fi − f̄)(fi+υ − f̄)

10: end for
11: Cυ ← Cυ/(n− l)
12: Λ ← Λ ∪ {Cυ}
13: end for
14: return Λ, Cl ▷ Λ is an array containing Cl−ξ, Cl, Cl+ξ

15: end function

16: function ClassicalOptimizer(Loss(RunQMCMC(), l), θ̄)
17: start from θ̄, find θ̄∗ that minimizes Cl ▷ minimize only with respect to Cl

18: return θ̄∗, Λ∗ ▷ return best parameters set θ̄∗ and corresponding C array Λ∗
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19: end function

20: function OptimizeLag(Λ)
21: ∆υ ← ∅
22: for Cυ ∈ Λ and Cpre

υ ∈ Λpre do
23: ∆υ ← ∆υ ∪ {|Cpre

υ − Cυ|}
24: end for
25: if ∆l−ξ − η > ∆l then ▷ update l if visibility ∆ is larger despite noise η
26: l ← l − ξ
27: else if ∆l+ξ − η > ∆l then ▷ update l if visibility ∆ is larger despite noise η
28: l ← l + ξ
29: end if
30: Λpre ← Λ
31: return l
32: end function

33: Optimization algorithm
34: θ̄ ← initialize params guess
35: repeat
36: θ̄∗, Λ∗ ← ClassicalOptmizer(Loss(RunQMCMC(), l), θ̄)
37: θ̄ ← θ̄∗

38: l ← OptmizeLag(Λ∗)
39: until converged or max iteration reached
40: return θ̄ ▷ return optimal parameters

Once the optimization step is concluded, it calculates:

|∆ ˆ̂
C
(l − ξ)| = | ˆ̂Cpre

ff (l − ξ)− ˆ̂
Cff (l − ξ)|

|∆ ˆ̂
C
(l)| = | ˆ̂Cpre

ff (l)− ˆ̂
Cff (l)|

|∆ ˆ̂
C
(l + ξ)| = | ˆ̂Cpre

ff (l + ξ)− ˆ̂
Cff (l + ξ)|

(3.12)

where ˆ̂
Cpre
ff are the ACFs values resulting from the previous optimization step. If

there is a clear increase in ∆C for either l + ξ or l − ξ, despite the noise η, the lag
value l is updated accordingly. Note that the value of ξ has to be tailored to the
specific problem considered.

• Fitting ˆ̂
Cff (l) to estimate the autocorrelation time τ :

Finally, we can also estimate Cff (l) and fit the final curve to infer the autocorrelation
time τ directly. As in the integration case, we stop estimating Cff (l) as soon as we hit
the first negative value. This approach, however, turned out to perform significantly
worse with respect to the others.

3.1.3 Classical optimizer

Since Cff , the Loss function we sought to minimize, is very noisy unless a large number of
samples n are drawn at each iteration, we opted for a gradient-free algorithm, the Nelder-
Mead algorithm. The Nelder-Mead algorithm is a direct search method widely used for
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non-convex optimization problems. It is a heuristic algorithm that seeks to minimize an
objective function by iteratively adapting a simplex S, a geometrical object consisting of
m+1 vertices in a m-dimensional parameters space. The vertices of the simplex are evalu-
ated according to the objective function, and then the simplex is transformed into a new set
of vertices based on their values. This process is repeated until the algorithm converges to
a minimum. The pseudocode describing the algorithm is reported in Algorithm 6. Despite
the standard Nelder-Mead algorithm does not perform well in high dimensional spaces,
alternative approaches to overcome this problem have been developed [16]. This gives us
the possibility to use the Nelder-Mead even with complicated ansatzes U(θ̄) depending on
a large number of parameters.

Algorithm 6 Nelder-Mead algorithm

1: function ClassicalOptimizer(Loss(RunQMCMC()), θ̄guess)
2: initialize simplex S with m+ 1 vertices ▷ θ̄guess being one of S vertices
3: repeat
4: sort S vertices by function Loss(RunQMCMC(θ̄)) value
5: calculate centroid θ̄c of the m best vertices
6: reflect worst vertex θ̄n through θ̄c to obtain θ̄r
7: if Loss(RunQMCMC(θ̄r)) < Loss(RunQMCMC(θ̄n)) then
8: expand θ̄n ← θ̄r +∆θ̄ in the direction of θ̄c
9: if Loss(RunQMCMC(θ̄r +∆θ̄)) < Loss(RunQMCMC(θ̄r)) then

10: θ̄n ← θ̄r +∆θ̄
11: else
12: θ̄n ← θ̄r
13: end if
14: else
15: contract worst vertex θ̄n ← θ̄c + γ(θ̄n − θ̄c) ▷ γ weights the update
16: if Loss(RunQMCMC(θ̄c+γ(θ̄n− θ̄c))) < Loss(RunQMCMC(θ̄n)) then
17: θ̄n ← θ̄c + γ(θ̄n − θ̄c)
18: else
19: shrink entire simplex towards best vertex θ̄1
20: end if
21: end if
22: until converged or max iteration reached
23: return best vertex θ̄1
24: end function

However, the algorithm has some limitations. It is sensitive to the initial simplex and the
convergence rate is relatively slow. More suited minimization algorithms may be able to
outperform the Nealder-Mead, like the ones proposed by Lavrijsen et al. [17], which have
been proven to perform well in noisy settings.

3.1.4 Observable f

Finally, the last point to address is how to choose an observable for the optimization
algorithm. Ideally, the ACF of the chosen observable should be dominated by a single
exponential autocorrelation time, associated with the slowest mode in the system, such
that:

Cff (l) ≈ Be−
l
τ (3.13)
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where B is a constant depending on the specific function and τ is directly related to the
spectral gap δ through Equation 3.4. In such a case, minimizing Cff (l) directly corresponds
to maximizing δ. If an observable does not fit this description it may work as well, however,
it is not guaranteed as is not clear if by minimizing Cff (l) we are effectively minimizing
the autocorrelation time related to δ. In the simulations presented in chapter 4, both the
energy and the magnetization turned out to be suitable choices for the specific optimization
problem we addressed.



Chapter 4

Simulations results and discussion

In order to analyze the performance of our algorithm, we run state vector simulations on
a classical computer, monitoring the spectral gap δ and the Loss function value during
the optimization (specs of the hardware used for simulations can be found in Table 4.1).
Despite Markov chains’ convergence being a complex and convoluted process, the spectral
gap provides a simple and effective way to describe it. The spectral gap value is defined
by the slowest Markov chain’s mode and is directly related to important quantities, such
as the mixing time τϵ (see subsection 1.2.1 for more details). We numerically calculated
the spectral gap by diagonalizing the transition matrix P (s′|s) using scipy.linalg library
in Python. P (s′|s) was found by computing entry by entry as per definition:

P (s′|s) = A(s′|s)Q(s′|s)(γ, t) + δss′
∑
s′′∈S

(1−A(s′′|s))Q(s′′|s)(γ, t) (4.1)

where Q(s′|s)(γ, t) is the symmetric quantum proposal distribution:

Q(s′|s)(γ, t) = Q(s|s′)(γ, t) = |⟨s′|U(γ, t)|s⟩|2 U(γ, t) = e−i((1−γ)αHprob−γHmix)t (4.2)

and A(s′|s) is the Metropolis-Hastings acceptance probability:

A(s′|s) = min(1,
µ(s′)Q(s′|s)(γ, t)

µ(s)Q(s|s′)(γ, t)
) = min(1,

µ(s′)

µ(s)
) = min(1, e(E(s)−E(s′))/T ) (4.3)

The specific problem we choose to address, is the optimization of the parametrized ansatz
U(γ, t) proposed by Layden et al., presented in chapter 2 [12]. The temperature range
we are interested in is T ∈ [0, 10], as the quantum-enhanced MCMC showed quantum
advantage at low temperatures. We start by presenting simulations at T = 10, discussing
the results in detail. We analyze the spectral gap landscape and test the proposed Loss
functions on different models. We then present simulations at T < 10 and, finally, we
discuss the limitations of the optimization algorithm and its potential scalability.

Computer Name CPU(s) Cores RAM/GB
hitachi AMD EPYC 7502 32-Core Processor (×2) 64 2000

danieleHP Intel(R) Core(TM) i7-1065G7 CPU 4 16

Table 4.1: Hardware used for the numerical simulations.



4.1. OPTIMIZATION ALGORITHM SIMULATIONS 31

4.1 Optimization algorithm simulations

We run simulations adopting both the fixed lag Loss and lag integration Loss. Note that
we omitted the results of the simulations using the lag optimization Loss. Given that we
were able to select a good lfix value for the problem at hand through a trial and error
on a small number of model instances, the lag optimization did not bring any advantage.
However, when dealing with problems where is not possible to identify a reasonable lfix
value, the lag optimization Loss may turn out to be a useful resource.

model : fully connected 2D Ising model with random Jij ∼ N (0, 1) and hi ∼ N (0, 1)

simulation type samples n lag l observable f T
average over #
model instances

simulations per
model instance

optimization (1) 2, 5× 103 4 energy E(s) 10 5 5
colormap (1) 4× 103 4 energy E(s) 10 1 1

optimization (2) 2, 5× 103 integral energy E(s) 10 5 5
colormap (2) 4× 103 integral energy E(s) 10 1 1

Table 4.2: Simulations specs used for numerical simulations reported in Figure 4.1, Fig-
ure 4.2, Figure 4.3 and Figure 4.4.

Figure 4.1 and Figure 4.3 depict the evolution of the average spectral gap and Loss value
during the optimization process over several model instances. Each plot shows the average
of 25 simulations: we used 5 randomly generated model instances and run 5 simulations per
instance, where the initial γ and t values were uniformly sampled from [0.1, 0.25] and [1, 10]
respectively. The results are compared to the ones obtained using the approach developed
by Layden et al. [12] and presented in chapter 2, where γ and t are uniformly sampled from
reasonable intervals, [0.25, 0.6] and [2, 20] respectively. Our algorithm converges to larger
spectral gap values on average, indicating better proposal strategies that lead to faster
convergence. Moreover, scatter plots show a clear correlation between the Loss function
and the spectral gap, demonstrating the effectiveness of the Loss function. As the spectral
gap reaches large values, the correlation suffers a slight decrease (around Loss = 0),
particularly visible in simulations with fixed lag Loss (Figure 4.1). This suggests that the
corresponding proposal distributions Q(s|s′)(γ, t) define Markov chains with ACFs decaying
so rapidly that at l = 4 (i.e. the lfix value used) are already assuming random values. We
can see this effect more pronounced in the N = 4 case because smaller size problems can
achieve larger spectral gap values corresponding to faster ACF decay rates. The clustering
of points, in both the fixed lag and integration lag Loss case, indicate that the Loss function
has converged and the optimization must be stopped.

Colormaps of the Loss and spectral gap are displayed in Figure 4.2 and Figure 4.4. For
this second series of simulations, we discretized the parameters space in 104 points and
for each point, corresponding to a pair (γ, t), we calculated the Loss and the spectral gap
of 2 randomly generated model instances 640401 and 64045 with respectively N = 4 and
N = 8 spins. The Loss colormaps illustrate the landscape that the classical optimizer
explores during the optimization. The Loss is able to replicate all the features present in
the spectral gap colormap, demonstrating its effectiveness.

1The number represents the numpy random seed used to generate the model.
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Figure 4.1: a. Optimization algorithm simulations. The average spectral gap is repre-
sented by the blue solid lines, the error bands show the population standard deviation.
The results are compared with the approach used by Layden et al. (random parameters)
[12]. b. The average fixed lag Loss is represented by the orange solid lines, the error bands
show the population standard deviation. c. Correlation between average spectral gap and
average Loss values. The error bars show the population standard deviation. Simulations
specs can be found in Table 4.2 under "optimization (1)".
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Figure 4.2: Loss and spectral gap δ colormaps of 2 specific model instances with 4 and
8 spins, at T = 10. a. fixed lag Loss colormap of the model instance 64040 (N = 4 spins)
b. Spectral gap δ colormap of the model instance 64040 (N = 4 spins). c. fixed lag Loss
colormap of the model instance 64045 (N = 8 spins). d. Spectral gap δ colormap of the
model instance 64045 (N = 8 spins). e. Spins coupling Jij colormap of the model instance
64040 (N = 4 spins). e. Spins coupling Jij colormap of the model instance 64045 (N = 8
spins). Simulations specs can be found in Table 4.2 under "colormap (1)".
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Figure 4.3: a. Optimization algorithm simulations. The average spectral gap is repre-
sented by the blue solid lines, the error bands show the population standard deviation.
The results are compared with the approach used by Layden et al. (random parameters)
[12]. b. The average lag integration Loss is represented by the orange solid lines, the error
bands show the population standard deviation. c. Correlation between average spectral
gap and average Loss values. The error bars show the population standard deviation.
Simulations specs can be found in Table 4.2 under "optimization (2)".
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Figure 4.4: Loss and spectral gap δ colormaps of 2 specific model instances with 4
and 8 spins, at T = 10. a. integration lag Loss colormap of the model instance 64040
(N = 4 spins) b. Spectral gap δ colormap of the model instance 64040 (N = 4 spins). c.
integration lag Loss colormap of the model instance 64045 (N = 8 spins). d. Spectral gap
δ colormap of the model instance 64045 (N = 8 spins). e. Spins coupling Jij colormap
of the model instance 64040 (N = 4 spins). e. Spins coupling Jij colormap of the model
instance 64045 (N = 8 spins). Simulations specs can be found in Table 4.2 under "colormap
(2)".
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4.1.1 Spectral gap landscape analysis

Spectral gap landscapes generated by different model instances share some common fea-
tures. In the following, we aim to explain the nature of these common characteristics.
Firstly, we can see that at small γ values the spectral gap assumes small values as well,
regardless of t. This is due to the fact that when evolving a computational basis state |s⟩
we are not effectively promoting transition between quantum states, but rather adding a
random phase to it as |s⟩ states are Hprob eigenstates:

H(γ) = (1− γ)αHprob − γHmix
γ<<−−−→ H(γ) ≈ Hprob → U(γ, t) ≈ e−iHprobt (4.4)

In other words, a Markov chain characterized by a proposal distribution Q(s|s′)(γ, t) with
small γ tends to spend a long time in a certain state before jumping onto a new one,
increasing the correlation between successive samples and leading to small spectral gap
values. If γ = 0, the chain is trapped in the initial state and δ goes to zero.
At large γ values instead, fringes associated with small spectral gap values appear. This
second common feature turns out to have a more interesting explanation. As γ approaches
1, we have:

H(γ) = (1− γ)αHprob − γHmix
γ≈1−−→ H(γ) ≈ Hmix → U(γ, t) ≈ e−iγHmixt (4.5)

where Hmix =
∑

j Xj with Xj = I1 ⊗ ... ⊗ X̂ ⊗ ... ⊗ IN . Since [Xj , Xi] = 0 ∀i, j, the
quantum proposal distribution then becomes:

U(γ, t) ≈ e−iγHmixt = e−iγ
∑

j Xjt =
∏
j

e−iXjγt

Q(s′|s)(γ, t) = |⟨s|U(γ, t)|s′⟩|2 ≈ |⟨s|
∏
j

e−iXjγt|s′⟩|2 =

|⟨s|
∏
j

(cos(γt)I − i sin(γt)Xj)|s′⟩|2

(4.6)

leading to:

γt = πm m ∈ N → Q(s′|s)(γ, t) ≈ 0 ∀ s′ ∈ S \ {s}

γt = π
m

2
m ∈ N → Q(s′|s)(γ, t) ≈ 0 ∀ s′ ∈ S \ {s̄}

(4.7)

where s̄ is the opposite spin configuration with respect to s, the most distant in Hamming
distance. In other words, when γ = 1 and γt = πm the Markov chain is trapped in the
initial state, while when γt = πm

2 it bounces back and forth between the initial state and
the one corresponding to the opposite configuration. When γ ≈ 1 and γt ≈ πm instead,
this effect is only partial. The chain tends to spend a long time in a certain state before
jumping onto a new one, generating the fringes corresponding to small spectral gap values.
A similar argument can be made for the γ ≈ 1 and γt ≈ πm

2 case. The chain tends to
spend a long time jumping between two states before moving onto a new pair, leading to
highly correlated samples. The fringes follow indeed the curves defined in the parameter
space by Equation 4.7, as illustrated in Figure 4.5.
Equation 4.7 explains also the artifact present in some Loss colormaps, such as the one
depicted in Figure 4.6. When γ is exactly 1 and γt = πm the chain stays in the initial
state and the ACF (therefore the Loss) goes to zero, indicating a "good" set of parameters.
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Figure 4.5: Spectral gap colormap showing the average over 10 randomly generated model
instances with N = 6 and T = 10. The dashed lines indicate the parameter pairs fulfilling
the conditions γt = πm or γt = πm

2 .

Figure 4.6: Zoomed-in view of a Loss colormap showing the artifact occurring when
Equation 4.7 is satisfied.

However, we know these parameter pairs to be associated with a small spectral gap, as
confirmed by the spectral gap colormaps. A similar argument can be made for the γt = πm

2
case.

4.1.2 Observable f : magnetization

The simulations previously presented made use of the energy to calculate the Loss. The
magnetization can be used as well, leading to slightly worse but still satisfying results.
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However, when using the fixed lag Loss, a situation like the one depicted in Figure 4.7
can occur. The Loss assumes small or even negative values in correspondence of the πm

2
fringes.

Figure 4.7: fixed lag Loss and spectral gap colormaps of a specific model instance (67623)
with 6 spins and T = 10. The Loss uses a fixed lag lfix = 5 and the magnetization
as observable. Negative Loss fringes are indicated by dashed lines. a. fixed lag Loss
colormap. b. Spectral gap δ colormap.

Let us consider the limit case γ = 1 and the γt = πm
2 . We know from Equation 4.7 that

the chain jumps back and forth between two states, which feature completely opposite
configurations. Therefore, the individual terms in the Loss:

ˆ̂
Cff (lfix) =

1

n− l

n−l∑
i

(fi − f̄)(fi+l − f̄) (4.8)

end up being negative if lfix is odd:

s→M(s), s̄→M(s̄) = −M(s) ⇒ (M − f̄)(−M − f̄) < 0 (4.9)

given that f̄ = 0. When γ ≈ 1 and the γt ≈ πm
2 instead, the chain has more freedom and

does not visit only a single pair of opposite configurations. However, it still spends a long
time jumping between opposite configurations, leading to a similar result. Note that the
lag integration Loss does not suffer from this problem.

4.1.3 Alternative models

In order to test the generality of our optimization approach, the proposed Loss functions
have been tested on different models. Once again, we discretized the parameters space in
104 points and for each point, corresponding to a pair (γ, t), we calculated the Loss (using
n = 4×103 samples) and the spectral gap of randomly generated model instances, plotting
the data as colormaps. The various models we considered are:

• Figure 4.9: 1D Ising model with normally distributed coupling Jij ∼ N (0, 1) and
hi = 0



4.1. OPTIMIZATION ALGORITHM SIMULATIONS 39

• Figure 4.10: 1D ferromagnetic Ising model with Jij = 1 and hi = −0.5

• Figure 4.11: 2D square lattice Ising model with nearest neighbour normally dis-
tributed coupling J⟨ij⟩ ∼ N (0, 1) and hi = 0. The square lattice is wrapped into a
torus (periodic boundary conditions).

Figure 4.8: Pictorial representation of Ising models. The blue arrows represent the spins
while the edges are the couplings Jij a. 1D Ising model with periodic boundary conditions.
b. 2D square lattice Ising model with periodic boundary conditions and nearest neighbor
coupling.

We considered periodic (toroidal) boundary conditions in all three cases for the sake of
simplicity. The Loss is able once again to replicate all the features present in the spectral
gap colormap, demonstrating its effectiveness.

Figure 4.9: 1D Ising model with normally distributed coupling Jij ∼ N (0, 1) and hi = 0.
a. integration lag Loss colormap of a model instance (6723) with N = 8 spins and T = 10.
b. Spectral gap δ colormap of the same model instance.
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Figure 4.10: 1D ferromagnetic Ising model with Jij = 1 and hi = −0.5. a. integration
lag Loss colormap of a model instance (6723) with N = 8 spins and T = 10. b. Spectral
gap δ colormap of the same model instance.

Figure 4.11: 2D square lattice Ising model with nearest neighbour normally distributed
coupling J⟨ij⟩ ∼ N (0, 1) and hi = 0. a. integration lag Loss colormap of a model instance
(67623) with N = 9 spins and T = 10. b. Spectral gap δ colormap of the same model
instance.
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4.2 Optimization at low temperatures

When the temperature T is lowered, sampling from the Boltzmann probability distribution
of Ising models with MCMC becomes more difficult. In particular, the transition matrix
spectrum changes in the following way:

1. The landscape defined by the Boltzmann probability becomes more rugged as the
energy barriers between different states grow exponentially fast with respect to β = 1

T .
In other words, it gets harder to explore the full state space because low-energy states
have an exponentially larger probability (defined by Equation 2.2) to be visited with
respect to the others and getting stuck in local minima becomes very likely. This
cause the chain to have a slow mixing time, as the non-dominant modes decay is
slower, leading to a clustering of the eigenvalues towards 1.

2. Consequently to this clustering, the spectral gap δ becomes smaller, indicating a
slower convergence of the Markov chain.

These changes affect the optimization algorithm performance as well. Firstly, a slower
convergence implies that a longer time is needed in order to sample from a probability
distribution close to the target one. Since the Loss function is an estimator whose definition
assumes using samples from a stationary Markov chain, this negatively affects the quality
of the estimate. Moreover, as the temperature is lowered, Markov chains tend to spend
increasingly more time, as often the proposed moves get rejected, in a smaller and smaller
number of states. At low temperatures, it becomes difficult to estimate the correlation
on a limited set of samples, resulting in a noisy and unreliable optimization landscape as
shown in Figure 4.12.
The direct solution to this problem is running longer chains so that they have enough time
to explore different states and show signs of autocorrelation which can be detected by the
ACF estimator. In other words, we increase the number of samples n used to evaluate the
Loss according to target the temperature regime. This approach reduces the noise in the
optimization landscape, as shown in Figure 4.13. However, it also increases significantly
the algorithm running time. Some alternative solutions, such as combining our algorithm
with classical techniques developed for MCMC sampling at low temperatures, may be able
to achieve satisfying results without being as computationally demanding [18, 19].

4.2.1 Low temperature simulations

model : fully connected 2D Ising model with random Jij ∼ N (0, 1) and hi ∼ N (0, 1)

simulation type samples n lag l observable f T
average over #
model instances

simulations per
model instance

optimization 2, 5− 10× 103 integral energy E(s) 1− 0.1 5 5
colormap (1) 5× 103 integral energy E(s) 10− 0.1 1 1
colormap (2) 5− 40× 103 integral energy E(s) 1 1 1

Table 4.3: Simulations specs used for numerical simulations reported in Figure 4.12,
Figure 4.13, Figure 4.14.

Figure 4.14 depicts the evolution of the average spectral gap and Loss value during the
optimization process over several model instances. The lag integration Loss has been
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Figure 4.12: Loss and spectral gap temperature dependencies. The Loss and spectral gap
of a randomly generated model instance (630201) with N = 6 spins have been simulated at
different temperatures using n = 5× 103 samples. As the temperature is lowered, a slower
convergence combined with growing energy barriers between different states results in a
noisy and unreliable optimization landscape. At T = 1 the optimization landscape becomes
very noisy. At T = 0.1 the Loss is not able to replicate the spectral gap landscape’s
features, making the optimization unfeasible. Simulations specs can be found in Table 4.3
under "colormap (1)".
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Figure 4.13: Loss colormap at T = 1 of a randomly generated model instance (630201)
with N = 6 spins. As the number of samples n increases, the visibility in the optimization
landscape is restored. Simulations specs can be found in Table 4.3 under "colormap (2)".

adopted in order to avoid the burden of selecting suitable lfix values for different tem-
peratures. Each plot shows the average of 25 simulations: we used 5 randomly generated
model instances and run 5 simulations per instance, where the initial γ and t values were
uniformly sampled from [0.1, 0.25] and [1, 10] respectively. The results are compared to
the ones obtained using the approach developed by Layden et al. [12] and presented in
chapter 2, where γ and t are uniformly sampled from reasonable intervals, [0.25, 0.6] and
[2, 20] respectively. At T = 1, using the same number of samples n = 2, 5 × 103 we used
at T = 10 (section 4.1), the optimization still converges to spectral gap values larger than
the ones reached by randomly sampling (γ, t). However, the orange trace representing the
average Loss value during the optimization is not monotone (Figure 4.14b, first plot), and
the scatter plot (Figure 4.14c, first plot) does not show a correlation between the average
spectral gap and the Loss as strong as in the T = 10 case. This is caused by the random
noise that, at each optimization step, significantly modifies the landscape explored by the
optimizer. At T = 0.1, using n = 2, 5 × 103 samples, the optimization does not succeed,
as shown in the second plot of Figure 4.14. Because of the reduced mobility of the chain,
the Loss is not able to detect correlation with only n = 2, 5× 103 samples. The resulting
unreliable optimization landscape makes the optimization unfeasible. By increasing n to
10× 103 (Figure 4.14, third plot), therefore significantly increasing the algorithm running
time, we can recover visibility in the optimization landscape and obtain satisfying results.
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Figure 4.14: a. Optimization algorithm simulations at low temperatures. The average
spectral gap is represented by the blue solid lines, the error bands show the population
standard deviation. The results are compared with the approach used by Layden et al.
(random parameters) [12]. b. The average Loss is represented by orange the solid lines,
the error bands show the population standard deviation. c. Correlation between average
spectral gap and average Loss. The error bars show the population standard deviation.
Simulations specs can be found in Table 4.3 under "optimization".
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4.3 Scaling with problem’s size

A crucial point to address is understanding whether or not the presented algorithm consti-
tutes a scalable approach to optimization. In particular, we want to know how to scale the
hyperparameters n and l with respect to the number of spins N in order to maintain the
performance. The spectral gap δ is known to decrease, meaning that the autocorrelation
time τ of the slowest mode increases (Equation 3.4), as the number of spins N increases.
This reduces the visibility in the optimization landscape as it becomes more difficult for
the optimizer to distinguish between different proposal distributions.

Figure 4.15: Pictorial representation of the visibility scaling with respect to the problem
size (number of spins N). Cff (l)worst and Cff (l)best represent the ACFs of the Markov
chains characterized by the worst and best proposal distributions respectively, given a
certain parametrized unitary U(θ̄).

Let us consider a generic parameterized unitary U(θ̄). We aim to optimize it using the
fixed lag Loss. We define the visibility in the optimization landscape as:

∆C(lfix) = Cff (lfix)worst − Cff (lfix)best (4.10)

where Cff (l)worst is the ACF, with decay rate τworst, of the Markov chain characterized
by the worst possible proposal distribution Q(s|s′)(θ̄worst), featuring the smallest possible
spectral gap. On the other hand, Cff (lfix)best represents the ACF, with decay rate τbest,
of the Markov chain characterized by the best possible proposal distribution Q(s|s′)(θ̄best),
featuring the largest possible spectral gap. In other words, θ̄worst and θ̄best represent the
performance limits of the chosen unitary U(θ̄). Let us now remember that the fixed lag
Loss is a noisy estimator of the ACF evaluated at l = lfix (see subsection 3.1.1 for more
details). If ∆C(lfix) is reduced to the same scale of the estimator’s noise η, the optimizer
is not able to distinguish between the worst and best proposal distributions. Therefore,
any proposal distribution is effectively indistinguishable from the others.
We assume that the chosen observable f is dominated by a single exponential autocorre-
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lation time:
Cff (l)best ≈ Be

− l
τbest

Cff (l)worst ≈ Be
− l

τworst

(4.11)

where B is a constant depending on the specific observable. We consider the worst possible
proposal distribution to feature a diverging autocorrelation time τworst →∞ (correspond-
ing to δ → 0):

Cff (l)worst ≈ Be
− l

τworst ≈ B (4.12)

redefining the visibility as:

∆C(lfix) ≈ B − Cff (lfix)best (4.13)

This constitutes the best-case scenario as ∆C(lfix) is maximized. If ∆C(lfix) ≲ η when
considering τworst → ∞, then any other case involving a different τworst value wolud still
lead to ∆C(lfix) ≲ η. We are now interested in estimating Cff (l)best in the limit of large
N . Given that, in general, we have:

lim
N→∞

δ = 0 (4.14)

we approximate τbest, for large N , in the following way:

τbest = −
1

ln(1− δbest)
≈ δ−1

best (4.15)

Considering once again the limit of large N , we have:

Cff (l)best ≈ Be
− l

τbest ≈ B(1− l

τbest
) (4.16)

Finally, we obtain:

∆C(lfix) ≈ B −B(1−
lfix
τbest

) = Blfix/τbest ≈ Blfixδbest (4.17)

As discussed in subsection 3.1.2, we consider the estimator’s noise η to go down approxi-
mately as 1/

√
n, where n is the number of samples. In general, depending on the specific

problem at hand, the noise could feature a complicated dependency on the problem size,
therefore we have η ≈ Ω(N)/

√
n. The visibility to noise ratio, in the limit of large N , is

then given by:

∆C(lfix)/η ≈
B(N)

√
nlfixδbest(N)

Ω(N)
(4.18)

Equation 4.18 can be used to predict whether the optimization algorithm scales efficiently
in the limit of large N for a specific problem. A similar but slightly more complicated
argument can be made for the lag integration Loss as well.
Let us consider the problem we focused on in previous sections, i.e. sampling from the
Boltzmann probability distribution of Ising models. We can safely assume, following Equa-
tion 3.9, that Ω(N) is on the same order of magnitude of B(N) or even larger. Therefore,
if the spectral gap decays exponentially fast with respect to the number of spins N , the
number of samples n has to be increased exponentially in order to maintain the same
visibility to noise ratio. On the other hand, if sampling from a specific Ising model in-
stance involves a spectral gap with a slower (polynomial) decay, the algorithm may scale
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efficiently. In other words, the scaling of the required number of samples for optimization
aligns proportionally with the scaling of the problem at hand.



Chapter 5

Conclusions

Quantum-enhanced Monte Carlo Markov chains are a class of hybrid algorithms combin-
ing classical Monte Carlo Markov chains methods with quantum-enhanced proposal dis-
tributions defined by parameterized unitaries. They perform Monte Carlo Markov chains
proposing moves through a quantum computer, which are then rejected or accepted by a
classical one. These algorithms showed potential for achieving quantum advantage in sam-
pling from complex probability distributions, a computationally hard task arising in many
diverse fields. However, no straightforward method is available for optimizing the parame-
ters defining the quantum-enhanced proposal distributions, which play a fundamental role
in determining the actual advantage.

The present thesis provides valuable insights into the optimization of quantum (and clas-
sical) parametrized proposal distributions for Monte Carlo Markov chains methods. We
proposed a general optimization algorithm that exploits estimates of the autocorrelation
function, calculated over a set of samples, to find the best proposal distribution. The
optimization algorithm iteratively updates the parameters defining the quantum proposal
distribution until a Loss function converges to a minimum. Inspired by the Variational
Quantum Eigensolver algorithm, it consists of a feedback loop that runs quantum-enhanced
Markov chains to evaluate a Loss function and pass the value to a classical optimizer. The
classical optimizer provides then new parameter values to the parametrized quantum cir-
cuit implementing the quantum state proposal, thus initiating the successive step.

As a proof of concept, we classically simulated the optimization of specific quantum pro-
posal strategies tailored for sampling from the Boltzmann probability distribution of Ising
models at low temperatures. We showed how, by optimizing the parameters with our
algorithm, it is possible to achieve better proposal distributions leading to a significantly
faster convergence compared to other known approaches. The results were quantified in
terms of the spectral gap δ. The various proposed Loss functions, tested on different Ising
models, showed a clear correlation with the spectral gap value, proving their effective-
ness. Moreover, the spectral gap landscape was analyzed, and its characteristic features
were explained. We also investigated the evolution of the algorithm’s performance when
the temperature is lowered, proposing a possible solution to reduce the noise in the opti-
mization landscape and obtain satisfying results at T < 10 at the cost of increasing the
algorithm running time. Finally, the current limitations of the optimization algorithm and
its potential scalability with respect to the problem’s size were discussed. Under reasonable
assumptions, we derived an approximate scaling law that predicts whether the algorithm’s
performance in the limit of large N (where N represents the problem’s size).
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5.1 Outlooks

While this thesis addressed many relevant questions, there are still several that remain
unexplored. Moving forward, there are several promising research directions that could
build on the findings presented in chapter 3. In the following, we will discuss some of these
potential outlooks:

• Adaptive ansatz: the unitary investigated in the present work is specifically tailored
to address the problem of sampling from the Boltzmann distribution of Ising models.
A more general approach could be found in adaptive ansatzes. Adaptive ansatzes
proved to be effective solutions in variational quantum algorithms [20], therefore they
may turn out to be not only a more general, but also a better-performing approach
toward sampling from complex probability distributions using quantum computers.

• Parallel tampering and simulated annealing: Sampling with Markov chains at
low temperatures is a well-known problem, therefore effective solutions in classical
settings have already been developed, such as parallel tampering and simulated an-
nealing [18, 19]. These techniques could be combined with our algorithm in order
to reduce the computational resources needed to achieve satisfying results at low
temperatures.

5.2 Code availability

The code used for numerical simulations can be found in the following GitHub repository:
https://github.com/DanieleCucurachi/QMCMC.git

https://github.com/DanieleCucurachi/QMCMC.git
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